基于航空图像的地图中的本地化提供了许多优势,例如全球一致性,地理参考地图以及可公开访问数据的可用性。但是,从空中图像和板载传感器中可以观察到的地标是有限的。这导致数据关联期间的歧义或混叠。本文以高度信息的代表制(允许有效的数据关联)为基础,为解决这些歧义提供了完整的管道。它的核心是强大的自我调整数据关联,它根据测量的熵调整搜索区域。此外,为了平滑最终结果,我们将相关数据的信息矩阵调整为数据关联过程产生的相对变换的函数。我们评估了来自德国卡尔斯鲁厄市周围城市和农村场景的真实数据的方法。我们将最新的异常缓解方法与我们的自我调整方法进行了比较,这表明了相当大的改进,尤其是对于外部城市场景。
translated by 谷歌翻译
平均网络集合的预测是改善各种基准和kaggle竞争中预测性能和计算的尖端有效方法。但是,深层合奏的Thruntime和培训成本随着整体的规模线性增长,使它们不适合许多应用。平均重量的权重代替预测规定了这种不利性推断,通常应用于模型的中间检查点以降低训练成本。尽管有效,但只有很少的作品可以平均体重的理解和表现。我们描述了重量必须符合体重空间,功能空间和损失的互动的先决条件。此外,我们介绍了新的测试方法(称为Oracle测试),以测量权重之间的功能空间。我们证明了我们的WF战略在艺术分割CNN和变形金刚以及BDD100K和CityScapes等现实世界中的多功能性。我们将WF与类似的操作进行了比较,并显示了我们对预测性能和校准的分布数据术语的优势。
translated by 谷歌翻译
虽然在文献中广泛研究了完整的本地化方法,但它们的数据关联和数据表示子过程通常会被忽视。但是,两者都是最终姿势估计的关键部分。在这项工作中,我们介绍了DA-LMR(Delta-AngeS Lane标记表示),在本地化方法的上下文中具有强大的数据表示。我们提出了一种在每个点中的曲线改变的车道标记的表示,并且在附加维度中包括该信息,从而提供了更详细的数据的几何结构描述。我们还提出了DC-SAC(距离兼容的样本共识),数据关联方法。这是一个启发式版Ransac,通过距离兼容性限制大大减少了假设空间。我们将呈现的方法与一些最先进的数据表示和数据关联方法进行比较,以不同的嘈杂场景。 DA-LMR和DC-SAC在比较方面产生最有前途的组合,精度达到98.1%,并且对于标准偏差0.5米的嘈杂数据召回99.7%。
translated by 谷歌翻译
Deep-learning of artificial neural networks (ANNs) is creating highly functional tools that are, unfortunately, as hard to interpret as their natural counterparts. While it is possible to identify functional modules in natural brains using technologies such as fMRI, we do not have at our disposal similarly robust methods for artificial neural networks. Ideally, understanding which parts of an artificial neural network perform what function might help us to address a number of vexing problems in ANN research, such as catastrophic forgetting and overfitting. Furthermore, revealing a network's modularity could improve our trust in them by making these black boxes more transparent. Here we introduce a new information-theoretic concept that proves useful in understanding and analyzing a network's functional modularity: the relay information $I_R$. The relay information measures how much information groups of neurons that participate in a particular function (modules) relay from inputs to outputs. Combined with a greedy search algorithm, relay information can be used to {\em identify} computational modules in neural networks. We also show that the functionality of modules correlates with the amount of relay information they carry.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
Local patterns play an important role in statistical physics as well as in image processing. Two-dimensional ordinal patterns were studied by Ribeiro et al. who determined permutation entropy and complexity in order to classify paintings and images of liquid crystals. Here we find that the 2 by 2 patterns of neighboring pixels come in three types. The statistics of these types, expressed by two parameters, contains the relevant information to describe and distinguish textures. The parameters are most stable and informative for isotropic structures.
translated by 谷歌翻译
It is well known that conservative mechanical systems exhibit local oscillatory behaviours due to their elastic and gravitational potentials, which completely characterise these periodic motions together with the inertial properties of the system. The classification of these periodic behaviours and their geometric characterisation are in an on-going secular debate, which recently led to the so-called eigenmanifold theory. The eigenmanifold characterises nonlinear oscillations as a generalisation of linear eigenspaces. With the motivation of performing periodic tasks efficiently, we use tools coming from this theory to construct an optimization problem aimed at inducing desired closed-loop oscillations through a state feedback law. We solve the constructed optimization problem via gradient-descent methods involving neural networks. Extensive simulations show the validity of the approach.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video. While the task has received much attention in the last decades, researchers have almost exclusively focused on the single object setting. Multi-object GOT benefits from a wider applicability, rendering it more attractive in real-world applications. We attribute the lack of research interest into this problem to the absence of suitable benchmarks. In this work, we introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence. Our benchmark allows researchers to tackle key remaining challenges in GOT, aiming to increase robustness and reduce computation through joint tracking of multiple objects simultaneously. Furthermore, we propose a Transformer-based GOT tracker TaMOS capable of joint processing of multiple objects through shared computation. TaMOs achieves a 4x faster run-time in case of 10 concurrent objects compared to tracking each object independently and outperforms existing single object trackers on our new benchmark. Finally, TaMOs achieves highly competitive results on single-object GOT datasets, setting a new state-of-the-art on TrackingNet with a success rate AUC of 84.4%. Our benchmark, code, and trained models will be made publicly available.
translated by 谷歌翻译